在深入理解多线程(一)——Synchronized的实现原理中介绍过关于Synchronize
的实现原理,无论是同步方法还是同步代码块,无论是ACC_SYNCHRONIZED
还是monitorenter
、monitorexit
都是基于Monitor
实现的,那么这篇来介绍下什么是Monitor。
操作系统中的管程
如果你在大学学习过操作系统,你可能还记得管程(monitors)在操作系统中是很重要的概念。同样Monitor在java同步机制中也有使用。
管程 (英语:Monitors,也称为监视器) 是一种程序结构,结构内的多个子程序(对象或模块)形成的多个工作线程互斥访问共享资源。这些共享资源一般是硬件设备或一群变量。管程实现了在一个时间点,最多只有一个线程在执行管程的某个子程序。与那些通过修改数据结构实现互斥访问的并发程序设计相比,管程实现很大程度上简化了程序设计。 管程提供了一种机制,线程可以临时放弃互斥访问,等待某些条件得到满足后,重新获得执行权恢复它的互斥访问。
Java线程同步相关的Moniter
在多线程访问共享资源的时候,经常会带来可见性和原子性的安全问题。为了解决这类线程安全的问题,Java提供了同步机制、互斥锁机制,这个机制保证了在同一时刻只有一个线程能访问共享资源。这个机制的保障来源于监视锁Monitor,每个对象都拥有自己的监视锁Monitor。
先来举个例子,然后我们在上源码。我们可以把监视器理解为包含一个特殊的房间的建筑物,这个特殊房间同一时刻只能有一个客人(线程)。这个房间中包含了一些数据和代码。
如果一个顾客想要进入这个特殊的房间,他首先需要在走廊(Entry Set)排队等待。调度器将基于某个标准(比如 FIFO)来选择排队的客户进入房间。如果,因为某些原因,该客户客户暂时因为其他事情无法脱身(线程被挂起),那么他将被送到另外一间专门用来等待的房间(Wait Set),这个房间的可以可以在稍后再次进入那件特殊的房间。如上面所说,这个建筑屋中一共有三个场所。
总之,监视器是一个用来监视这些线程进入特殊的房间的。他的义务是保证(同一时间)只有一个线程可以访问被保护的数据和代码。
Monitor其实是一种同步工具,也可以说是一种同步机制,它通常被描述为一个对象,主要特点是:
对象的所有方法都被“互斥”的执行。好比一个Monitor只有一个运行“许可”,任一个线程进入任何一个方法都需要获得这个“许可”,离开时把许可归还。
通常提供singal机制:允许正持有“许可”的线程暂时放弃“许可”,等待某个谓词成真(条件变量),而条件成立后,当前进程可以“通知”正在等待这个条件变量的线程,让他可以重新去获得运行许可。
监视器的实现
在Java虚拟机(HotSpot)中,Monitor是基于C++实现的,由ObjectMonitor实现的,其主要数据结构如下:
ObjectMonitor() {
_header = NULL;
_count = 0;
_waiters = 0,
_recursions = 0;
_object = NULL;
_owner = NULL;
_WaitSet = NULL;
_WaitSetLock = 0 ;
_Responsible = NULL ;
_succ = NULL ;
_cxq = NULL ;
FreeNext = NULL ;
_EntryList = NULL ;
_SpinFreq = 0 ;
_SpinClock = 0 ;
OwnerIsThread = 0 ;
}
源码地址:objectMonitor.hpp
ObjectMonitor中有几个关键属性:
_owner:指向持有ObjectMonitor对象的线程
_WaitSet:存放处于wait状态的线程队列
_EntryList:存放处于等待锁block状态的线程队列
_recursions:锁的重入次数
_count:用来记录该线程获取锁的次数
当多个线程同时访问一段同步代码时,首先会进入_EntryList
队列中,当某个线程获取到对象的monitor后进入_Owner
区域并把monitor中的_owner
变量设置为当前线程,同时monitor中的计数器_count
加1。即获得对象锁。
若持有monitor的线程调用wait()
方法,将释放当前持有的monitor,_owner
变量恢复为null
,_count
自减1,同时该线程进入_WaitSet
集合中等待被唤醒。若当前线程执行完毕也将释放monitor(锁)并复位变量的值,以便其他线程进入获取monitor(锁)。如下图所示
ObjectMonitor类中提供了几个方法:
获得锁
void ATTR ObjectMonitor::enter(TRAPS) {
Thread * const Self = THREAD ;
void * cur ;
//通过CAS尝试把monitor的`_owner`字段设置为当前线程
cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
//获取锁失败
if (cur == NULL) { assert (_recursions == 0 , "invariant") ;
assert (_owner == Self, "invariant") ;
// CONSIDER: set or assert OwnerIsThread == 1
return ;
}
// 如果旧值和当前线程一样,说明当前线程已经持有锁,此次为重入,_recursions自增,并获得锁。
if (cur == Self) {
// TODO-FIXME: check for integer overflow! BUGID 6557169.
_recursions ++ ;
return ;
}
// 如果当前线程是第一次进入该monitor,设置_recursions为1,_owner为当前线程
if (Self->is_lock_owned ((address)cur)) {
assert (_recursions == 0, "internal state error");
_recursions = 1 ;
// Commute owner from a thread-specific on-stack BasicLockObject address to
// a full-fledged "Thread *".
_owner = Self ;
OwnerIsThread = 1 ;
return ;
}
// 省略部分代码。
// 通过自旋执行ObjectMonitor::EnterI方法等待锁的释放
for (;;) {
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition()
// or java_suspend_self()
EnterI (THREAD) ;
if (!ExitSuspendEquivalent(jt)) break ;
//
// We have acquired the contended monitor, but while we were
// waiting another thread suspended us. We don't want to enter
// the monitor while suspended because that would surprise the
// thread that suspended us.
//
_recursions = 0 ;
_succ = NULL ;
exit (Self) ;
jt->java_suspend_self();
}
}
释放锁
void ATTR ObjectMonitor::exit(TRAPS) {
Thread * Self = THREAD ;
//如果当前线程不是Monitor的所有者
if (THREAD != _owner) {
if (THREAD->is_lock_owned((address) _owner)) { //
// Transmute _owner from a BasicLock pointer to a Thread address.
// We don't need to hold _mutex for this transition.
// Non-null to Non-null is safe as long as all readers can
// tolerate either flavor.
assert (_recursions == 0, "invariant") ;
_owner = THREAD ;
_recursions = 0 ;
OwnerIsThread = 1 ;
} else {
// NOTE: we need to handle unbalanced monitor enter/exit
// in native code by throwing an exception.
// TODO: Throw an IllegalMonitorStateException ?
TEVENT (Exit - Throw IMSX) ;
assert(false, "Non-balanced monitor enter/exit!");
if (false) {
THROW(vmSymbols::java_lang_IllegalMonitorStateException());
}
return;
}
}
// 如果_recursions次数不为0.自减
if (_recursions != 0) {
_recursions--; // this is simple recursive enter
TEVENT (Inflated exit - recursive) ;
return ;
}
//省略部分代码,根据不同的策略(由QMode指定),从cxq或EntryList中获取头节点,通过ObjectMonitor::ExitEpilog方法唤醒该节点封装的线程,唤醒操作最终由unpark完成。
除了enter和exit方法以外,objectMonitor.cpp中还有
void wait(jlong millis, bool interruptable, TRAPS);
void notify(TRAPS);
void notifyAll(TRAPS);
等方法。
总结
上面介绍的就是HotSpot虚拟机中Moniter的的加锁以及解锁的原理。
通过这篇文章我们知道了sychronized
加锁的时候,会调用objectMonitor的enter
方法,解锁的时候会调用exit
方法。事实上,只有在JDK1.6之前,synchronized
的实现才会直接调用ObjectMonitor的enter
和exit
,这种锁被称之为重量级锁。为什么说这种方式操作锁很重呢?
- Java的线程是映射到操作系统原生线程之上的,如果要阻塞或唤醒一个线程就需要操作系统的帮忙,这就要从用户态转换到核心态,因此状态转换需要花费很多的处理器时间,对于代码简单的同步块(如被
synchronized
修饰的get
或set
方法)状态转换消耗的时间有可能比用户代码执行的时间还要长,所以说synchronized
是java语言中一个重量级的操纵。
所以,在JDK1.6中出现对锁进行了很多的优化,进而出现轻量级锁,偏向锁,锁消除,适应性自旋锁,锁粗化(自旋锁在1.4就有 只不过默认的是关闭的,jdk1.6是默认开启的),这些操作都是为了在线程之间更高效的共享数据 ,解决竞争问题。后面的文章会继续介绍这几种锁以及他们之间的关系。
好文~
真心好文,赞
写的是真的好,通俗易懂,四篇博客读起来行云流水